Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We investigate optimal decision making under imperfect recall, that is, when an agent forgets information it once held before. An example is the absentminded driver game, as well as team games in which the members have limited communication capabilities. In the framework of extensive-form games with imperfect recall, we analyze the computational complexities of finding equilibria in multiplayer settings across three different solution concepts: Nash, multiselves based on evidential decision theory (EDT), and multiselves based on causal decision theory (CDT). We are interested in both exact and approximate solution computation. As special cases, we consider (1) single-player games, (2) two-player zero-sum games and relationships to maximin values, and (3) games without exogenous stochasticity (chance nodes). We relate these problems to the complexity classes PPAD, PLS, Σ_2^P, ∃R, and ∃∀R.more » « less
-
null (Ed.)We study the search problem class PPA_q defined as a modulo-q analog of the well-known polynomial parity argument class PPA introduced by Papadimitriou (JCSS 1994). Our first result shows that this class can be characterized in terms of PPA_p for prime p. Our main result is to establish that an explicit version of a search problem associated to the Chevalley - Warning theorem is complete for PPA_p for prime p. This problem is natural in that it does not explicitly involve circuits as part of the input. It is the first such complete problem for PPA_p when p ≥ 3. Finally we discuss connections between Chevalley-Warning theorem and the well-studied short integer solution problem and survey the structural properties of PPA_q.more » « less
-
We provide a computationally and statistically efficient estimator for the classical problem of trun-cated linear regression, where the dependent variabley=wTx+εand its corresponding vector ofcovariatesx∈Rkare only revealed if the dependent variable falls in some subsetS⊆R; otherwisethe existence of the pair(x,y)is hidden. This problem has remained a challenge since the earlyworks of Tobin (1958); Amemiya (1973); Hausman and Wise (1977); Breen et al. (1996), its appli-cations are abundant, and its history dates back even further to the work of Galton, Pearson, Lee,and Fisher Galton (1897); Pearson and Lee (1908); Lee (1914); Fisher (1931). While consistent es-timators of the regression coefficients have been identified, the error rates are not well-understood,especially in high-dimensional settings.Under a “thickness assumption” about the covariance matrix of the covariates in the revealed sample, we provide a computationally efficient estimator for the coefficient vectorwfromnre-vealed samples that attains`2errorO(√k/n), recovering the guarantees of least squares in thestandard (untruncated) linear regression setting. Our estimator uses Projected Stochastic Gradi-ent Descent (PSGD) on the negative log-likelihood of the truncated sample, and only needs ora-cle access to the setS, which may otherwise be arbitrary, and in particular may be non-convex.PSGD must be restricted to an appropriately defined convex cone to guarantee that the negativelog-likelihood is strongly convex, which in turn is established using concentration of matrices onvariables with sub-exponential tails. We perform experiments on simulated data to illustrate the accuracy of our estimator.As a corollary of our work, we show that SGD provably learns the parameters of single-layerneural networks with noisy Relu activation functions Nair and Hinton (2010); Bengio et al. (2013);Gulcehre et al. (2016), given linearly many, in the number of network parameters, input-outputpairs in the realizable setting.more » « less
An official website of the United States government

Full Text Available